Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 781
Filtrar
1.
J Biol Chem ; 300(3): 105702, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301896

RESUMO

Elevated levels of branched chain amino acids (BCAAs) and branched-chain α-ketoacids are associated with cardiovascular and metabolic disease, but the molecular mechanisms underlying a putative causal relationship remain unclear. The branched-chain ketoacid dehydrogenase kinase (BCKDK) inhibitor BT2 (3,6-dichlorobenzo[b]thiophene-2-carboxylic acid) is often used in preclinical models to increase BCAA oxidation and restore steady-state BCAA and branched-chain α-ketoacid levels. BT2 administration is protective in various rodent models of heart failure and metabolic disease, but confoundingly, targeted ablation of Bckdk in specific tissues does not reproduce the beneficial effects conferred by pharmacologic inhibition. Here, we demonstrate that BT2, a lipophilic weak acid, can act as a mitochondrial uncoupler. Measurements of oxygen consumption, mitochondrial membrane potential, and patch-clamp electrophysiology show that BT2 increases proton conductance across the mitochondrial inner membrane independently of its inhibitory effect on BCKDK. BT2 is roughly sixfold less potent than the prototypical uncoupler 2,4-dinitrophenol and phenocopies 2,4-dinitrophenol in lowering de novo lipogenesis and mitochondrial superoxide production. The data suggest that the therapeutic efficacy of BT2 may be attributable to the well-documented effects of mitochondrial uncoupling in alleviating cardiovascular and metabolic disease.


Assuntos
Lipogênese , Doenças Metabólicas , Membranas Mitocondriais , Inibidores de Proteínas Quinases , Espécies Reativas de Oxigênio , Humanos , 2,4-Dinitrofenol/farmacologia , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Lipogênese/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Camundongos , Ratos , Linhagem Celular , Membranas Mitocondriais/efeitos dos fármacos , Células Cultivadas
2.
Int J Biol Macromol ; 255: 128303, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992939

RESUMO

Efficient synthetic routes for biomanufacturing chemicals often require the overcoming of pathway bottlenecks by tailoring enzymes to improve the catalytic efficiency or even implement non-native activities. 1,2,4-butanetriol (BTO), a valuable commodity chemical, is currently biosynthesized from D-xylose via a four-enzyme reaction cascade, with the ThDP-dependent α-keto acid decarboxylase (KdcA) identified as the potential bottleneck. Here, to further enhance the catalytic activity of KdcA toward the non-native substrate α-keto-3-deoxy-xylonate (KDX), in silico screening and structure-guided evolution were performed. The best mutants, S286L/G402P and V461K, exhibited a 1.8- and 2.5-fold higher enzymatic activity in the conversion of KDX to 3,4-dihydroxybutanal when compared to KdcA, respectively. MD simulations revealed that the two sets of mutations reshaped the substrate binding pocket, thereby increasing the binding affinity for KDX and promoting interactions between KDX and cofactor ThDP. Then, when the V461K mutant instead of wild type KdcA was integrated into the enzyme cascade, a 1.9-fold increase in BTO titer was observed. After optimization of the reaction conditions, the enzyme cocktail contained V461K converted 60 g/L D-xylose to 22.1 g/L BTO with a yield of 52.1 %. This work illustrated that protein engineering is a powerful tool for modifying the output of metabolic pathway.


Assuntos
Carboxiliases , Xilose , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Xilose/metabolismo , Butanóis , Carboxiliases/genética , Engenharia Metabólica
3.
J Inherit Metab Dis ; 47(1): 41-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36880392

RESUMO

Maple syrup urine disease (MSUD) is rare autosomal recessive metabolic disorder caused by the dysfunction of the mitochondrial branched-chain 2-ketoacid dehydrogenase (BCKD) enzyme complex leading to massive accumulation of branched-chain amino acids and 2-keto acids. MSUD management, based on a life-long strict protein restriction with nontoxic amino acids oral supplementation represents an unmet need as it is associated with a poor quality of life, and does not fully protect from acute life-threatening decompensations or long-term neuropsychiatric complications. Orthotopic liver transplantation is a beneficial therapeutic option, which shows that restoration of only a fraction of whole-body BCKD enzyme activity is therapeutic. MSUD is thus an ideal target for gene therapy. We and others have tested AAV gene therapy in mice for two of the three genes involved in MSUD, BCKDHA and DBT. In this study, we developed a similar approach for the third MSUD gene, BCKDHB. We performed the first characterization of a Bckdhb-/- mouse model, which recapitulates the severe human phenotype of MSUD with early-neonatal symptoms leading to death during the first week of life with massive accumulation of MSUD biomarkers. Based on our previous experience in Bckdha-/- mice, we designed a transgene carrying the human BCKDHB gene under the control of a ubiquitous EF1α promoter, encapsidated in an AAV8 capsid. Injection in neonatal Bckdhb-/- mice at 1014 vg/kg achieved long-term rescue of the severe MSUD phenotype of Bckdhb-/- mice. These data further validate the efficacy of gene therapy for MSUD opening perspectives towards clinical translation.


Assuntos
Doença da Urina de Xarope de Bordo , Animais , Humanos , Camundongos , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/química , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Doença da Urina de Xarope de Bordo/genética , Doença da Urina de Xarope de Bordo/terapia , Doença da Urina de Xarope de Bordo/diagnóstico , Fenótipo , Qualidade de Vida
4.
FEBS J ; 291(1): 132-141, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37789611

RESUMO

In the present study, cryo-electron tomography was used to investigate the localization of 2-oxoacid dehydrogenase complexes (OADCs) in cardiac mitochondria and mitochondrial inner membrane samples. Two classes of ordered OADC inner cores with different symmetries were distinguished and their quaternary structures modeled. One class corresponds to pyruvate dehydrogenase complexes and the other to dehydrogenase complexes of α-ketoglutarate and branched-chain α-ketoacids. OADCs were shown to be localized in close proximity to membrane-embedded respirasomes, as observed both in densely packed lamellar cristae of cardiac mitochondria and in ruptured mitochondrial samples where the dense packing is absent. This suggests the specificity of the OADC-respirasome interaction, which allows localized NADH/NAD+ exchange between OADCs and complex I of the respiratory chain. The importance of this local coupling is based on OADCs being the link between respiration, glycolysis and amino acid metabolism. The coupling of these basic metabolic processes can vary in different tissues and conditions and may be involved in the development of various pathologies. The present study shows that this important and previously missing parameter of mitochondrial complex coupling can be successfully assessed using cryo-electron tomography.


Assuntos
Cetoácidos , Complexo Piruvato Desidrogenase , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida) , Complexo Piruvato Desidrogenase/metabolismo , Mitocôndrias Cardíacas/metabolismo , Ácidos Cetoglutáricos , Complexo Cetoglutarato Desidrogenase/metabolismo
5.
J Biol Chem ; 299(11): 105333, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37827290

RESUMO

Branched chain α-ketoacid dehydrogenase complex (BCKDC) is the rate-limiting enzyme in branched chain amino acid (BCAA) catabolism, a metabolic pathway with great importance for human health. BCKDC belongs to the mitochondrial α-ketoacid dehydrogenase complex family, which also includes pyruvate dehydrogenase complex and oxoglutarate dehydrogenase complex. Here, we revealed that BCKDC can be substantially inhibited by reactive nitrogen species (RNS) via a mechanism similar to what we recently discovered with pyruvate dehydrogenase complex and oxoglutarate dehydrogenase complex-RNS can cause inactivating covalent modifications of the lipoic arm on its E2 subunit. In addition, we showed that such reaction between RNS and the lipoic arm of the E2 subunit can further promote inhibition of the E3 subunits of α-ketoacid dehydrogenase complexes. We examined the impacts of this RNS-mediated BCKDC inhibition in muscle cells, an important site of BCAA metabolism, and demonstrated that the nitric oxide production induced by cytokine stimulation leads to a strong inhibition of BCKDC activity and BCAA oxidation in myotubes and myoblasts. More broadly, nitric oxide production reduced the level of functional lipoic arms across the multiple α-ketoacid dehydrogenases and led to intracellular accumulation of their substrates (α-ketoacids), decrease of their products (acyl-CoAs), and a lower cellular energy charge. In sum, this work revealed a new mechanism for BCKDC regulation, demonstrated that RNS can generally inhibit all α-ketoacid dehydrogenases, which has broad physiological implications across multiple cell types, and elucidated the mechanistic connection between RNS-driven inhibitory modifications on the E2 and E3 subunits of α-ketoacid dehydrogenases.


Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida) , Células Musculares , Óxido Nítrico , Espécies Reativas de Nitrogênio , Humanos , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Complexo Cetoglutarato Desidrogenase , Células Musculares/metabolismo , Complexo Piruvato Desidrogenase , Espécies Reativas de Nitrogênio/metabolismo
6.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446004

RESUMO

Clinically relevant disease-causing variants of the human dihydrolipoamide dehydrogenase (hLADH, hE3), a common component of the mitochondrial α-keto acid dehydrogenase complexes, were characterized using a multipronged approach to unravel the molecular pathomechanisms that underlie hLADH deficiency. The G101del and M326V substitutions both reduced the protein stability and triggered the disassembly of the functional/obligate hLADH homodimer and significant FAD losses, which altogether eventually manifested in a virtually undetectable catalytic activity in both cases. The I12T-hLADH variant proved also to be quite unstable, but managed to retain the dimeric enzyme form; the LADH activity, both in the forward and reverse catalytic directions and the affinity for the prosthetic group FAD were both significantly compromised. None of the above three variants lent themselves to an in-depth structural analysis via X-ray crystallography due to inherent protein instability. Crystal structures at 2.89 and 2.44 Å resolutions were determined for the I318T- and I358T-hLADH variants, respectively; structure analysis revealed minor conformational perturbations, which correlated well with the residual LADH activities, in both cases. For the dimer interface variants G426E-, I445M-, and R447G-hLADH, enzyme activities and FAD loss were determined and compared against the previously published structural data.


Assuntos
Di-Hidrolipoamida Desidrogenase , Humanos , Di-Hidrolipoamida Desidrogenase/genética , Conformação Proteica , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)
7.
J Thromb Haemost ; 21(11): 3224-3235, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37473846

RESUMO

BACKGROUND: Megakaryocyte differentiation and platelet production disorders are the main causes of thrombocythemia and thrombocytopenia and lead to thrombosis or hemorrhage. Branched-chain amino acids (BCAAs) are essential nutrients that regulate important metabolic signals. BCAA administration could also increase platelet activation and promote the risk of thrombosis. OBJECTIVES: To unveil the role of BCAAs in thrombocytopoiesis. METHODS: BCAA-fed mice and megakaryocyte/platelet-specific branched-chain α-keto acid dehydrogenase E1α subunit-deficient mice were used to study the role of BCAAs in thrombocytopoiesis. RESULTS: In this study, we found that BCAA diet could facilitate megakaryocyte differentiation and platelet production. Meanwhile, megakaryocyte/platelet-specific branched-chain α-keto acid dehydrogenase E1α subunit-deficient mice developed thrombocythemia, which was mainly caused by the excessive differentiation of megakaryocytes and proplatelet biogenesis. Moreover, the use of BT2, the agonist of BCAA catabolism, could affect proplatelet formation (PPF) and megakaryocyte polyploidization, as well as ameliorating the thrombocythemia of BCAA-fed mice. CONCLUSION: We found that deficiency in BCAA catabolism led to the activation of p70S6K/mammalian target of rapamycin (mTOR) signaling, megakaryocyte over differentiation, and the acceleration of PPF. Activating BCAA metabolism with BT2 could inhibit mTOR signaling, reduce PPF, and ameliorate thrombocythemia in BCAA-fed mice. Therefore, this study reveals a novel role of BCAAs in megakaryocyte differentiation and platelet production, suggesting that targeting BCAA-mediated p70S6K/mTOR signaling may be a potential strategy for the treatment of thrombocytopenia or thrombocythemia.


Assuntos
Trombocitopenia , Trombocitose , Trombose , Camundongos , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa , Trombopoese , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Mamíferos/metabolismo
8.
Ann Transplant ; 28: e939893, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37248682

RESUMO

BACKGROUND Maple syrup urine disease (MSUD) is a rare genetic deficiency of the branched-chain alpha-keto acid dehydrogenase (BCKAD) complex that breaks down amino acids, resulting in multi-organ failure. This report is of 5 pediatric cases of domino liver transplantation (DLT) from live donors with MSUD from a single transplant center in Beijing. CASE REPORT All MSUD donors were confirmed to have disease-causing mutations in BCKDHA (branched-chain keto acid dehydrogenase E1, alpha polypeptide) or BCKDHB (branched-chain keto acid dehydrogenase E1, ß polypeptide) genes by peripheral blood whole-exon sequencing. Serum leucine and valine concentrations were significantly higher than normal values. Recipients ranged in age from 0.75 to 9 years old. Three patients underwent auxiliary liver transplantation, and the other children all underwent liver or partial liver transplantation. This case report was followed up for 25 to 79 months. The prognosis, growth, and development of patients were followed up. By the end of the last follow-up, all children had survived. All patients had normal serum leucine and valine concentrations after surgery. In case 1, portal vein stenosis post-operatively. In case 2, stenosis of hepatic artery and bile duct occurred. In case 5, hepatic artery and portal vein stenosis occurred, resulting in graft loss.   CONCLUSIONS The findings from our center support the findings from other pediatric liver transplant centers that liver transplantation using MSUD donors can have successful outcomes without the development of MSUD in the recipient.


Assuntos
Doadores Vivos , Doença da Urina de Xarope de Bordo , Criança , Humanos , Lactente , Pré-Escolar , Doença da Urina de Xarope de Bordo/cirurgia , Doença da Urina de Xarope de Bordo/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , Leucina/metabolismo , Constrição Patológica , Valina
9.
Mol Metab ; 70: 101694, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36801448

RESUMO

OBJECTIVE: The mitochondrial pyruvate carrier (MPC) has emerged as a therapeutic target for treating insulin resistance, type 2 diabetes, and nonalcoholic steatohepatitis (NASH). We evaluated whether MPC inhibitors (MPCi) might correct impairments in branched chain amino acid (BCAA) catabolism, which are predictive of developing diabetes and NASH. METHODS: Circulating BCAA concentrations were measured in people with NASH and type 2 diabetes, who participated in a recent randomized, placebo-controlled Phase IIB clinical trial to test the efficacy and safety of the MPCi MSDC-0602K (EMMINENCE; NCT02784444). In this 52-week trial, patients were randomly assigned to placebo (n = 94) or 250 mg MSDC-0602K (n = 101). Human hepatoma cell lines and mouse primary hepatocytes were used to test the direct effects of various MPCi on BCAA catabolism in vitro. Lastly, we investigated how hepatocyte-specific deletion of MPC2 affects BCAA metabolism in the liver of obese mice and MSDC-0602K treatment of Zucker diabetic fatty (ZDF) rats. RESULTS: In patients with NASH, MSDC-0602K treatment, which led to marked improvements in insulin sensitivity and diabetes, had decreased plasma concentrations of BCAAs compared to baseline while placebo had no effect. The rate-limiting enzyme in BCAA catabolism is the mitochondrial branched chain ketoacid dehydrogenase (BCKDH), which is deactivated by phosphorylation. In multiple human hepatoma cell lines, MPCi markedly reduced BCKDH phosphorylation and stimulated branched chain keto acid catabolism; an effect that required the BCKDH phosphatase PPM1K. Mechanistically, the effects of MPCi were linked to activation of the energy sensing AMP-dependent protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) kinase signaling cascades in vitro. BCKDH phosphorylation was reduced in liver of obese, hepatocyte-specific MPC2 knockout (LS-Mpc2-/-) mice compared to wild-type controls concomitant with activation of mTOR signaling in vivo. Finally, while MSDC-0602K treatment improved glucose homeostasis and increased the concentrations of some BCAA metabolites in ZDF rats, it did not lower plasma BCAA concentrations. CONCLUSIONS: These data demonstrate novel cross talk between mitochondrial pyruvate and BCAA metabolism and suggest that MPC inhibition leads to lower plasma BCAA concentrations and BCKDH phosphorylation by activating the mTOR axis. However, the effects of MPCi on glucose homeostasis may be separable from its effects on BCAA concentrations.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Ratos , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Transportadores de Ácidos Monocarboxílicos , Ratos Zucker , Aminoácidos de Cadeia Ramificada/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Glucose , Serina-Treonina Quinases TOR/metabolismo
10.
Physiol Rep ; 11(4): e15608, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36802195

RESUMO

Systemic branched-chain amino acid (BCAA) metabolism is dysregulated in cardiometabolic diseases. We previously demonstrated that upregulated AMP deaminase 3 (AMPD3) impairs cardiac energetics in a rat model of obese type 2 diabetes, Otsuka Long-Evans-Tokushima fatty (OLETF). Here, we hypothesized that the cardiac BCAA levels and the activity of branched-chain α-keto acid dehydrogenase (BCKDH), a rate-limiting enzyme in BCAA metabolism, are altered by type 2 diabetes (T2DM), and that upregulated AMPD3 expression is involved in the alteration. Performing proteomic analysis combined with immunoblotting, we discovered that BCKDH localizes not only to mitochondria but also to the endoplasmic reticulum (ER), where it interacts with AMPD3. Knocking down AMPD3 in neonatal rat cardiomyocytes (NRCMs) increased BCKDH activity, suggesting that AMPD3 negatively regulates BCKDH. Compared with control rats (Long-Evans Tokushima Otsuka [LETO] rats), OLETF rats exhibited 49% higher cardiac BCAA levels and 49% lower BCKDH activity. In the cardiac ER of the OLETF rats, BCKDH-E1α subunit expression was downregulated, while AMPD3 expression was upregulated, resulting in an 80% lower AMPD3-E1α interaction compared to LETO rats. Knocking down E1α expression in NRCMs upregulated AMPD3 expression and recapitulated the imbalanced AMPD3-BCKDH expressions observed in OLETF rat hearts. E1α knockdown in NRCMs inhibited glucose oxidation in response to insulin, palmitate oxidation, and lipid droplet biogenesis under oleate loading. Collectively, these data revealed previously unrecognized extramitochondrial localization of BCKDH in the heart and its reciprocal regulation with AMPD3 and imbalanced AMPD3-BCKDH interactions in OLETF. Downregulation of BCKDH in cardiomyocytes induced profound metabolic changes that are observed in OLETF hearts, providing insight into mechanisms contributing to the development of diabetic cardiomyopathy.


Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida) , AMP Desaminase , Diabetes Mellitus Tipo 2 , Animais , Ratos , AMP Desaminase/genética , AMP Desaminase/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulação para Baixo , Proteômica , Ratos Endogâmicos OLETF , Ratos Long-Evans , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética
11.
PLoS One ; 18(2): e0279431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36827343

RESUMO

Primary biliary cirrhosis (PBC) is an organ-specific autoimmune disease that eventually develops into cirrhosis and even liver cancer. In recent years, the incidence rate has been increasing, and the early diagnosis and treatment of PBC are crucial. In the early diagnosis method of PBC, anti-mitochondrial antibodies (AMAs) are an important diagnostic basis, especially the M2 subtype (AMA-M2) with almost 100% specificity. We selected the BCOADC-E2 protein, a mitochondrial autoantigen that reacts specifically with AMA-M2 antibodies, and carried out DNA recombination and protein mutation experiments by cloning in vitro the homologous target gene sequence BCKD that expresses the antigenic epitope of BCOADC-E2 protein, to provide experience for later exploring the effect of mutations of amino acids around the lysine in the active center of BCOADC-E2 protein on its specific binding to AMA-M2, and to lay the foundation for determining the key amino acids of BCOADC-E2 for the diagnosis and treatment of PBC. In addition, we apply this scientific research content to graduate course teaching. Experimental technology of microbial molecular ecology is a course with the cross-integration of multidisciplinary knowledge and experimental skills offered at our college since 2018. This article derives from the part of this course on the construction of recombinant plasmids. The students first constructed the recombinant plasmid pGEX-BCKD using the vector plasmid pGEX-4T1 and the target gene fragment BCKD provided by the laboratory and used this as a template to construct the pGEX-BCKD-E4A point mutation plasmid by the overlap extension PCR (SOE PCR) technique to achieve the effect of mutating the fifth amino acid glutamate in front of lysine, the active centre of the BCOADC-E2 lipid acyl binding domain, to alanine for subsequent studies. Through the research experiment, combining theoretical knowledge and experimental operation, we aim to deepen the student's understanding of DNA recombination technology, let them feel the practical application prospect of experimental technology, stimulate students' interest in professional knowledge learning, and cultivate students' scientific thinking and innovation consciousness. We examined the quality of the teaching through the process and summative evaluation of the students. In this study, the students successfully completed the construction of pGEX-BCKD-E4A point mutant plasmid, and the average test score increased from 40.4% before teaching to 91.1%. The teaching effect was remarkable. This kind of research experimental teaching mode has good application prospects, and other education and teachers can refer to and reference it.


Assuntos
Cetona Oxirredutases , Cirrose Hepática Biliar , Humanos , Complexos Multienzimáticos/metabolismo , Complexo Piruvato Desidrogenase , Cetona Oxirredutases/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida) , Projetos de Pesquisa , Lisina , DNA , Autoanticorpos
12.
Biol Futur ; 74(1-2): 109-118, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36842090

RESUMO

(Dihydro)lipoamide dehydrogenase (LADH) deficiency is an autosomal recessive genetic metabolic disorder. It generally presents with an onset in the neonatal age and premature death. The clinical picture usually involves metabolic decompensation and lactic acidosis that lead to neurological, cardiological, and/or hepatological outcomes. Severity of the disease is due to the fact that LADH is a common E3 subunit to the pyruvate, alpha-ketoglutarate, alpha-ketoadipate, and branched-chain alpha-keto acid dehydrogenase complexes and is also part of the glycine cleavage system; hence, a loss in LADH activity adversely affects several central metabolic pathways simultaneously. The severe clinical manifestations, however, often do not parallel the LADH activity loss, which implies the existence of auxiliary pathological pathways; stimulated reactive oxygen species (ROS) production as well as dissociation from the relevant multienzyme complexes proved to be auxiliary exacerbating pathomechanisms for selected disease-causing LADH mutations. This review provides an overview on the therapeutic challenges of inherited metabolic diseases, structural and functional characteristics of the mitochondrial alpha-keto acid dehydrogenase complexes, molecular pathogenesis and structural basis of LADH deficiency, and relevant potential future medical perspectives.


Assuntos
Di-Hidrolipoamida Desidrogenase , Ácido Pirúvico , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida) , Di-Hidrolipoamida Desidrogenase/genética , Di-Hidrolipoamida Desidrogenase/química , Di-Hidrolipoamida Desidrogenase/metabolismo , Ácidos Cetoglutáricos , Espécies Reativas de Oxigênio/metabolismo , Humanos
13.
J Biol Chem ; 299(3): 102959, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717078

RESUMO

The mammalian mitochondrial branched-chain ketoacid dehydrogenase (BCKD) complex is a multienzyme complex involved in the catabolism of branched-chain amino acids. BCKD is regulated by the BCKD kinase, or BCKDK, which binds to the E2 subunit of BCKD, phosphorylates its E1 subunit, and inhibits enzymatic activity. Inhibition of the BCKD complex results in increased levels of branched-chain amino acids and branched-chain ketoacids, and this buildup has been associated with heart failure, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. To find BCKDK inhibitors for potential treatment of these diseases, we performed both NMR and virtual fragment screening and identified tetrazole-bearing fragments that bind BCKDK at multiple sites. Through structure-based virtual screening expanding from these fragments, the angiotensin receptor blocker class antihypertension drugs and angiotensin receptor blocker-like compounds were discovered to be potent BCKDK inhibitors, suggesting potential new avenues for heart failure treatment combining BCKDK inhibition and antihypertension.


Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida) , Antagonistas de Receptores de Angiotensina , Humanos , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Complexos Multienzimáticos/metabolismo , Insuficiência Cardíaca , Hipertensão
14.
Am J Med Genet A ; 191(5): 1360-1365, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36706222

RESUMO

Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by the insufficient catabolism of branched-chain amino acids. BCKDHA, BCKDHB, DBT, and DLD encode the subunits of the branched-chain α-ketoacid dehydrogenase complex, which is responsible for the catabolism of these amino acids. Biallelic pathogenic variants in BCKDHA, BCKDHB, or DBT are characteristic of MSUD. In addition, a patient with a PPM1K defect was previously reported. PPM1K dephosphorylates and activates the enzyme complex. We report a patient with MSUD with mild findings and elevated BCAA levels carrying a novel homozygous start-loss variant in PPM1K. Our study offers further evidence that PPM1K variants cause mild MSUD.


Assuntos
Doença da Urina de Xarope de Bordo , Proteína Fosfatase 2C , Humanos , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/química , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Homozigoto , Doença da Urina de Xarope de Bordo/diagnóstico , Doença da Urina de Xarope de Bordo/genética , Mutação , Proteína Fosfatase 2C/genética
15.
Nat Chem Biol ; 19(3): 265-274, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36266351

RESUMO

Pyruvate dehydrogenase complex (PDHC) and oxoglutarate dehydrogenase complex (OGDC), which belong to the mitochondrial α-ketoacid dehydrogenase family, play crucial roles in cellular metabolism. These multi-subunit enzyme complexes use lipoic arms covalently attached to their E2 subunits to transfer an acyl group to coenzyme A (CoA). Here, we report a novel mechanism capable of substantially inhibiting PDHC and OGDC: reactive nitrogen species (RNS) can covalently modify the thiols on their lipoic arms, generating a series of adducts that block catalytic activity. S-Nitroso-CoA, a product between RNS and the E2 subunit's natural substrate, CoA, can efficiently deliver these modifications onto the lipoic arm. We found RNS-mediated inhibition of PDHC and OGDC occurs during classical macrophage activation, driving significant rewiring of cellular metabolism over time. This work provides a new mechanistic link between RNS and mitochondrial metabolism with potential relevance for numerous physiological and pathological conditions in which RNS accumulate.


Assuntos
Braço , Óxido Nítrico , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida) , Complexo Piruvato Desidrogenase/metabolismo , Complexos Multienzimáticos
16.
J Nutr Sci Vitaminol (Tokyo) ; 69(6): 490-492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38171823

RESUMO

Branched-chain α-ketoacid dehydrogenase (BCKDH) complex is a rate-limiting enzyme in branched-chain amino acid catabolism and is subject to inactivation via phosphorylation by BCKDH kinase (BDK). In the present study, we examined the effects of vitamin D-deficiency on hepatic BCKDH and BDK activities in rats. Rats fed a vitamin D-deficient diet long-term showed a slight but significant decrease in plasma Ca concentration, which was associated with an elevation of BCKDH activity and a decrease in BDK activity. These results suggest that vitamin D deficiency promotes BCAA catabolism via BCKDH activation, which resulted from BDK suppression. It is proposed that Ca2+-dependent BDK inhibition by thiamine pyrophosphate may be involved in the BDK suppression.


Assuntos
Proteínas Quinases , Deficiência de Vitamina D , Ratos , Animais , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Fígado/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/metabolismo , Vitamina D/farmacologia
17.
Mol Metab ; 66: 101611, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36220546

RESUMO

OBJECTIVE: Branched chain amino acid (BCAA) catabolic defects are implicated to be causal determinates of multiple diseases. This work aimed to better understand how enhancing BCAA catabolism affected metabolic homeostasis as well as the mechanisms underlying these improvements. METHODS: The rate limiting step of BCAA catabolism is the irreversible decarboxylation by the branched chain ketoacid dehydrogenase (BCKDH) enzyme complex, which is post-translationally controlled through phosphorylation by BCKDH kinase (BDK). This study utilized BT2, a small molecule allosteric inhibitor of BDK, in multiple mouse models of metabolic dysfunction and NAFLD including the high fat diet (HFD) model with acute and chronic treatment paradigms, the choline deficient and methionine minimal high fat diet (CDAHFD) model, and the low-density lipoprotein receptor null mouse model (Ldlr-/-). shRNA was additionally used to knock down BDK in liver to elucidate liver-specific effects of BDK inhibition in HFD-fed mice. RESULTS: A rapid improvement in insulin sensitivity was observed in HFD-fed and lean mice after BT2 treatment. Resistance to steatosis was assessed in HFD-fed mice, CDAHFD-fed mice, and Ldlr-/- mice. In all cases, BT2 treatment reduced steatosis and/or inflammation. Fasting and refeeding demonstrated a lack of response to feeding-induced changes in plasma metabolites including insulin and beta-hydroxybutyrate and hepatic gene changes in BT2-treated mice. Mechanistically, BT2 treatment acutely altered the expression of genes involved in fatty acid oxidation and lipogenesis in liver, and upstream regulator analysis suggested that BT2 treatment activated PPARα. However, BT2 did not directly activate PPARα in vitro. Conversely, shRNA-AAV-mediated knockdown of BDK specifically in liver in vivo did not demonstrate any effects on glycemia, steatosis, or PPARα-mediated gene expression in mice. CONCLUSIONS: These data suggest that BT2 treatment acutely improves metabolism and liver steatosis in multiple mouse models. While many molecular changes occur in liver in BT2-treated mice, these changes were not observed in mice with AAV-mediated shRNA knockdown of BDK. All together, these data suggest that systemic BDK inhibition is required to improve metabolism and steatosis by prolonging a fasting signature in a paracrine manner. Therefore, BCAA may act as a "fed signal" to promote nutrient storage and reduced systemic BCAA levels as shown in this study via BDK inhibition may act as a "fasting signal" to prolong the catabolic state.


Assuntos
Fígado Gorduroso , PPAR alfa , Animais , Camundongos , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Jejum , Camundongos Knockout , RNA Interferente Pequeno
18.
Am J Med Genet A ; 188(9): 2738-2749, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35799415

RESUMO

Maple syrup urine disease (MSUD) is an intoxication-type inherited metabolic disorder in which hyperleucinemia leads to brain swelling and death without treatment. MSUD is caused by branched-chain alpha-ketoacid dehydrogenase deficiency due to biallelic loss of the protein products from the genes BCKDHA, BCKDHB, or DBT, while a distinct but related condition is caused by loss of DLD. In this case series, eleven individuals with MSUD caused by two pathogenic variants in DBT are presented. All eleven individuals have a deletion of exon 2 (delEx2, NM_001918.3:c.48_171del); six individuals are homozygous and five individuals are compound heterozygous with a novel missense variant (NM_001918.5:c.916 T > C [p.Ser306Pro]) confirmed to be in trans. Western Blot indicates decreased amount of protein product in delEx2;c.916 T > C liver cells and absence of protein product in delEx2 homozygous hepatocytes. Ultrahigh performance liquid chromatography-tandem mass spectrometry demonstrates an accumulation of branched-chain amino acids and alpha-ketoacids in explanted hepatocytes. Individuals with these variants have a neonatal-onset, non-thiamine-responsive, classical form of MSUD. Strikingly, the entire cohort is derived from families who immigrated to the Washington, DC, metro area from Honduras or El Salvador suggesting the possibility of a founder effect.


Assuntos
Doença da Urina de Xarope de Bordo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , América Central , Genômica , Humanos , Recém-Nascido , Doença da Urina de Xarope de Bordo/genética , Mutação
19.
Nat Commun ; 13(1): 3278, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672312

RESUMO

Maple syrup urine disease (MSUD) is a rare recessively inherited metabolic disorder causing accumulation of branched chain amino acids leading to neonatal death, if untreated. Treatment for MSUD represents an unmet need because the current treatment with life-long low-protein diet is challenging to maintain, and despite treatment the risk of acute decompensations and neuropsychiatric symptoms remains. Here, based on significant liver contribution to the catabolism of the branched chain amino acid leucine, we develop a liver-directed adeno-associated virus (AAV8) gene therapy for MSUD. We establish and characterize the Bckdha (branched chain keto acid dehydrogenase a)-/- mouse that exhibits a lethal neonatal phenotype mimicking human MSUD. Animals were treated at P0 with intravenous human BCKDHA AAV8 vectors under the control of either a ubiquitous or a liver-specific promoter. BCKDHA gene transfer rescued the lethal phenotype. While the use of a ubiquitous promoter fully and sustainably rescued the disease (long-term survival, normal phenotype and correction of biochemical abnormalities), liver-specific expression of BCKDHA led to partial, though sustained rescue. Here we show efficacy of gene therapy for MSUD demonstrating its potential for clinical translation.


Assuntos
Doença da Urina de Xarope de Bordo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Terapia Genética , Doença da Urina de Xarope de Bordo/diagnóstico , Doença da Urina de Xarope de Bordo/genética , Doença da Urina de Xarope de Bordo/terapia , Camundongos , Fenótipo
20.
Lab Med ; 53(6): 596-601, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-35657820

RESUMO

OBJECTIVE: Maple syrup urine disease (MSUD; OMIM #248600) is an autosomal recessive metabolic disorder in the catabolism of branched-chain amino acids (leucine, isoleucine, and valine) and may be lethal if untreated in affected newborns. METHODS: Single-nucleotide polymorphism haplotyping and Sanger sequencing of BCKDHA, BCKDHB, and DBT genes were performed in a cohort of 10 MSUD patients. RESULTS: We identified a 16.6 Mb homozygous region harboring the DBT gene in an Iranian girl presenting with MSUD. Sanger sequencing revealed a pathogenic homozygous variant (NM_001918.3: c.1174A > C) in the DBT gene. We further found a controversial variant (rs12021720: c.1150 A > G) in the DBT gene. This substitution (p.Ser384Gly) is highly debated in literature. Bioinformatics and cosegregation analysis, along with identifying the real pathogenic variants (c.1174 A > C), lead to terminate these various interpretations of c.1150 A > G variant. CONCLUSION: Our study introduced c.1150 A > G as a polymorphic variant, which is informative for variant databases and also helpful in molecular diagnosis.


Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida) , Doença da Urina de Xarope de Bordo , Feminino , Humanos , Recém-Nascido , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , Irã (Geográfico) , Doença da Urina de Xarope de Bordo/diagnóstico , Doença da Urina de Xarope de Bordo/genética , Mutação de Sentido Incorreto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...